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BACKGROUND: The metabolome is a collection of exogenous chemicals and metabolites from cellular processes that may reflect the body’s response
to environmental exposures. Studies of air pollution and metabolomics are limited.

OBJECTIVES: To explore changes in the human metabolome before, during, and after the 2008 Beijing Olympics Games, when air pollution was high,
low, and high, respectively.

METHODS: Serum samples were collected before, during, and after the Olympics from 26 participants in an existing panel study. Gas and ultra-high
performance liquid chromatography/mass spectrometry were used in metabolomics analysis. Repeated measures ANOVA, network analysis, and
enrichment analysis methods were employed to identify metabolites and classes associated with air pollution changes.
RESULTS: A total of 886 molecules were measured in our metabolomics analysis. Network partitioning identified four modules with 65 known metabo-
lites that significantly changed across the three time points. All known molecules in the first module (n=33) were lipids (e.g., eicosapentaenoic acid, ste-
aric acid). The second module consisted primarily of dipeptides (n=24, e.g., isoleucylglycine) plus 8 metabolites from four other classes (e.g.,
hypoxanthine, 12-hydroxyeicosatetraenoic acid). Most of the metabolites in Modules 3 (19 of 23) and 4 (5 of 5) were unknown. Enrichment analysis of
module-identified metabolites indicted significantly overrepresented pathways, including long- and medium-chain fatty acids, polyunsaturated fatty acids
(n3 and n6), eicosanoids, lysolipid, dipeptides, fatty acid metabolism, and purine metabolism [(hypo) xanthine/inosine–containing pathways].

CONCLUSIONS: We identified two major metabolic signatures: one consisting of lipids, and a second that included dipeptides, polyunsaturated fatty
acids, taurine, and xanthine. Metabolites in both groups decreased during the 2008 Beijing Olympics, when air pollution was low, and increased after
the Olympics, when air pollution returned to normal (high) levels. https://doi.org/10.1289/EHP3705

Introduction
The metabolome represents a collection of exogenous chemicals
andmetabolites from cellular processes thatmay provide a proximal
indication of physiological responses to environmental exposures,
disease processes, and drug therapies. Therefore, metabolomics
may be a powerful tool to better understand the health effects of
environmental stressors, including air pollution (Roessner and
Bowne 2009).

Air pollution exposures have been associated with a wide array
of health effects, including respiratory diseases, cardiovascular dis-
eases, adverse pregnancy outcomes, and death (Brunekreef and
Holgate 2002). However, the underlying mechanisms remain
unclear. Over the past years, the use of metabolomics approaches
to study environmental exposure-related biological mechanisms
has increased. Previous studies using animal models have

associated air pollution exposure with a small number of targeted
metabolites including arachidonic acid (AA), prostaglandin D2
(PGD2), and hydroxyoctadecadienoic acids (Brower et al. 2016;
Cruickshank-Quinn et al. 2014; Joad et al. 1994; Li et al. 2015;
Miller et al. 2015).

Metabolomics studies involving human subjects are limited. To
our knowledge, only a few observational epidemiological studies
have evaluated associations between environmental air pollution
and metabolomics. In a study conducted in North Carolina, particu-
late matter with a diameter of 2:5 lm or less (PM2:5) and ozone
exposures were associated with changes in levels of targeted analy-
tes along the creatine biosynthesis pathway and fatty acid oxidation
metabolites (Breitner et al. 2016). Exposure to PM10 and PM2:5 was
associated with differences in 8metabolites (including a-tocopherol
and several amino acids) from different pathways among the 280
untargeted metabolites in the TwinsUK study (Menni et al. 2015).
Nitrogen dioxide (NO2) exposure was associated with 10 meta-
bolites in the lysophosphatidylcholines pathway among the 188
targeted serum metabolites (Ward-Caviness et al. 2016). Traffic-
related air pollution has been associatedwith the elicitation of oxida-
tive stress and inflammatory pathways (Liang et al. 2018), as well as
the perturbation of linoleatemetabolism pathway,whichwas further
identified as a mediator in the association of air pollution with
asthma and cardio-cerebrovascular diseases (Jeong et al. 2018). In
addition, two experimental studies examined the impact of short-
term air pollution exposure on metabolomics, including a study of
31 healthy volunteers exposed to ambient air pollution from differ-
ent sources (e.g., subway, farm, traffic) for 5 h in which changes
were reported in 89 of 3,873 metabolic features (Vlaanderen et al.
2017). A clinic-based crossover study of 24 participants reported
increased levels of cortisol, corticosterone, and global lipid metabo-
lism after 2 h of exposure to ozone (Miller et al. 2016).
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The Beijing Olympics Air Pollution (BoaP) study is a panel
study that was conducted during the Beijing Olympics in 2008
when temporary air pollution controls were implemented (Mu
et al. 2014). The study enrolled 201 adults prior to Beijing’s air
quality improvement initiative, when air pollution was high, and
followed them during the Olympics, when air pollution was low,
and after the Olympics, when air pollution returned to normal
high levels. Biological specimens were collected and banked
from each participant at baseline, during, and after the Olympics.
For the present study, we performed an untargeted metabolomics
analysis of biospecimens collected from a subset of BoaP partici-
pants to identify human serum metabolome changes before, dur-
ing, and after the Olympics to better understand mechanisms
underlying the health effects of air pollution exposures.

Methods

Study Design and Population
The present study is based on the BoaP study, which leveraged air
pollution controls during the 2008 Beijing Olympic Games. The
detailed design of the BoaP study can be found in our previous pub-
lications (Farhat et al. 2018; Mu et al. 2014). Briefly, the panel
study recruited 201 participants residing in Beihang Community in
Beijing, China, before the Olympics who were followed up during
the Olympics (29 d after the opening of the Olympics) and again 74
d after the Olympics ended. Those with a prior medical history of
cancer or serious immunological or chronic respiratory diseases
were not included. Blood sample collection, in-person interviews,
and physical examinations were conducted during each visit.
Informed consent was obtained from each participant before their
baseline visit. The study was approved by the institutional review
boards of the University at Buffalo and the Peking University. A
subset of participants from the parent study was selected for the
metabolomics analysis.

Demographics and potential confounder measurement. A
total of 26 nonsmokers, 30–65 y of age, were randomly selected.
All participants were Han Chinese. Weight and height were
measured at baseline. Weekly vegetable and fruit consumption
(grams/week) was calculated based on information of frequency
and numbers of servings (50 g) per day during the past week col-
lected at each visit. Approximately 12% of the data was missing
for vegetable and fruit consumption. Missing data for each indi-
vidual was imputed as the average of known values during other
time points. An auxiliary variable for diet was defined as diet = log
(vegetable consumption+ fruit consumption) for subsequent statisti-
cal modeling. Transportation data was collected at each time point
by asking about the routine mode of transportation (i.e., bicycle,
public transportation, or walking to work). Missing data for two
individuals at a single time point were imputed as the transportation
mode used during the other two time points, which was the same
for both participants.

Air pollution assessment. The method used to characterize
aggregated air pollution has been previously described in detail
(Farhat et al. 2018; Mu et al. 2014). Briefly, PM1, PM2:5, PM7,
PM10, and total suspended particulates were measured using a par-
ticle mass monitor (Met One® 531 AEROCET Particulate Profiler;
Met One Instruments, Inc.) twice per day during the study period
along with temperature and relative humidity. The monitor was
located in the center of the community in an open space close to the
main road. Overall, the average levels of PM2:5 and PM10 were,
respectively, 83± 92:7lg=m3 and 128± 122:0 lg=m3 before the
Olympics, and they decreased to 33± 48:7lg=m3 (p=0:02) and
56± 60:4 lg=m3 (p=0:01) during the Olympics and returned to
46± 57:2 lg=m3 (p=0:31) and 140± 120:7 lg=m3 (p<0:01) af-
ter the Olympics. Therefore, we used three time points—before,

during, and after the Olympics—to denote periods of high, low,
and high air pollution exposures, respectively.

Metabolites measurement and processing. The method used
to collect blood samples has been previously described in detail
(Farhat et al. 2018). Briefly, fasting blood samples were drawn at
baseline and at the two follow-up visits. Collected biospecimens
were immediately transferred to Peking University for process-
ing. Serum and blood clots were separated by centrifugation, and
aliquots were stored in cryogenic storage vials at −80�C. Samples
were transferred on dry ice to the biorepository facility at the
University at Buffalo.

Serum samples were sent on dry ice to Metabolon Inc. (in
Durham, NC) for metabolomics analysis. Two platforms were
used in the analysis: gas chromatography/mass spectrometry
(GC/MS) and ultra-high performance liquid chromatography/tan-
dem mass spectroscopy (UPLA-MS/MS). Untargeted metabolo-
mic analysis was performed as described by Ohta et al. (2010)
and Lawton et al. (2014). Briefly, 100 lL of serum was subjected
to a series of four liquid–liquid extractions, and the solvent
extracts were pooled and then split into two equal aliquots, one
for GC/MS and one for LC/MS. For LC/MS analysis, dry extracts
were reconstituted in 10% methanol and 0.1% formic acid. GC/
MS aliquots were derivatized using equal parts bistrimethylsilyl-
trifluoroacetamide and solvent mixture acetonitrile: dichlorome-
thane:cyclohexane (5:4:1) with 5% trimethylamine at 60˚C for
1 h. LC/MS was carried out using a Surveyor™ HPLC (Thermo
Electron Corporation) with an electrospray ionization (Katajamaa
and Oresic 2005) source coupled to an LTQ® MS (Thermo
Electron Corporation). For GC/MS, the N,O-Bis(trimethylsilyl)
trifluoroacetamide-derivatized samples were analyzed on a
Thermo Finnigan™ Trace™ DSQ™ fast-scanning single-quadru-
pole MS operated at unit mass resolving power with a 20 m×
0:18 mm (0:18�mm film phase consisting of 5% phenyldimethyl
silicone) GC column. More than 3,500 commercially available
purified standard compounds have been acquired and registered
into the Laboratory Information Management System for distribu-
tion to both the LC/MS and GC/MS platforms for determination of
their analytical characteristics. Briefly, metabolites are identified
by comparison of retention time/index (IR), mass-to-charge ratio
(m/z) of the ion, and MS fragmentation pattern to known metabo-
lites. The peaks are matched to Metabolon’s library, then all peaks
and matches are verified manually by a team of curators.
Metabolites would be considered as Level 1 metabolites by the
definitions of the Metabolites Standard Initiative. Metabolon main-
tains a library based on authenticated standards that contains the
RI, m/z, and chromatographic data (including MS/MS spectral
data) on all molecules present in the library. Furthermore, bio-
chemical identifications are based on three criteria: the RI within a
narrow RI window of the proposed identification, a nominal mass
match to the library ± 0:4 amu, and the MS/MS forward and
reverse scores between the experimental data and authentic stand-
ards. Metabolites that lacked authenticated standards but had char-
acteristics (RI, mass, and fragmentation) and correlated with
known metabolites were considered as Level 2 if the metabolites
were comparable to published spectra or as Level 3 if there were
no published spectra. Level 3 metabolites are marked with single
star to indicate a lack of 100% certainty in identity. The MS/MS
scores are based on a comparison of the ions present in the experi-
mental spectrum to the ions present in the library spectrum.
Although there may be similarities between these molecules based
on one of these factors, the use of all three data points can be uti-
lized to distinguish and differentiate biochemicals.

Several quality control measures were used during the analysis:
• Instrument variability was determined by calculating the me-
dian relative standard deviation (RSD) for the internal
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standards that were added to each sample prior to injection
into the mass spectrometers.

• Overall process variability was determined by calculating
the median RSD for all endogenous metabolites present in
100% of the technical replicates of pooled client samples.

• Each participant’s serum samples from all three time points
were assayed in the same batch to avoid interassay variations.

• Lab technicians atMetabolonwere blinded to sample identity.
• Recovery standards were added prior to the assay for quality
control purposes.
The median RSD was 5% for internal variability and 11% for

total process variability. Missing values were imputed using the
minimum observed value for each metabolite following a log
transformation.

Statistical Analysis
For each metabolite, scaling was done using the sample set me-
dian. Of the samples where a biochemical analyte was detected,
the median value was set to 1.00, and all other values were scaled
accordingly. After that step, any samples with missing values
(i.e., a peak was not detected) were assigned the sample set mini-
mum for that biochemical analyte. Subsequent statistics were per-
formed after natural log transforming of the scaled, imputed data.

Statistical testing of individual metabolites. The levels of each
metabolite were compared among the three time points (before, dur-
ing, and after the Olympics) using repeated measures Analysis of
variance (ANOVA). Time point, sex, baseline body mass index
(BMI), combined vegetable and fruit intake during the week before
each visit (in grams), and mode of transportation to each study visit
(categorized as bicycle, public transportation, or walking and mod-
eled using indicator terms) were included as covariates. To take into
account the multiple comparisons, q-value (Storey 2002; Storey and
Tibshirani 2003) were used to estimate the false discovery rate,
which is the proportion of false positives incurred when a particular
test is classified as significant and is often used for high-dimensional
testing problems. The q-values were calculated using the qvalue
package in R (Dabney et al. 2010). Post hoc tests were used to con-
trast the levels of metabolites during versus before the Olympics
and after versus during theOlympics.

Network analysis. Network analysis was utilized to identify
significant changes in metabolome classes. Specifically, we iden-
tified modules in which a group of metabolites were correlated
with each other and associated with changes in air pollution lev-
els in a concerted manner. These modules were further investi-
gated for their functional roles in annotated class enrichment
analysis.

As the first step, a correlation network was constructed with all
metabolites. Each of the metabolites was represented as a node in
the graph, and an edge (connecting line) was placed between two
metabolites if the absolute value of their Spearman’s correlation
coefficient exceeded a 0.7 threshold. Spearman’s correlation was
utilized because it is rank based and therefore robust to nonlinear
relationships and outliers. The threshold of 0.7 was carefully
selected in order to a) minimize spurious correlations that may
occur by chance because the probability of this occurring is close
to zero and b) obtain a graph that is not too dense or too sparse,
leading to toomany or too few clusters, respectively.

The resulting network is partitioned into modules by greedy
maximization of modularity (Clauset et al. 2004), using R package
igraph (Csardi and Nepusz 2006). Modularity is a measure of the
difference between the actual and the expected edge density, where
the expected density assumes no module structure. Higher modu-
larity indicates a stronger module structure. Only modules with
sizes of at least five nodeswere considered for further analysis.

In order to test for module significance and to control for con-
founding, we fit a series of two statistical models. First, we fit a
linear regression for each metabolite in the module, with the inde-
pendent variables of age, BMI, transportation, and vegetable and
fruit consumptions. For each module, the residuals from these
regression models were then used to fit the following three-way
ANOVA to test the module significance:

yijk = l+ ai + bj + ck + ðabÞij + ðacÞik + ðbcÞjk + ðabcÞijk
+ eijkl, eijkl ∼ i:i:d:Nð0,r2Þ,

where yijkl are the residuals from the jth metabolite level for the
lth individual with sex k at the ith time point. The lij is the mean
level of jth metabolite at the ith time point. The effects of ith time
point, jth metabolite, and kth sex are denoted as ai, bj, and ck,
respectively. We calculated Benjamini and Hochberg–adjusted
p-values to account for multiple comparisons (Benjamini and
Hochberg 1995; Storey 2003). The modules with adjusted
p<0:05 for the main effect of time were deemed significant.
The marginal effects of sex, as well as interactions between sex
and time, were also examined.

For the significant modules, pairwise comparisons of before
versus during the Olympics, and during versus after the Olympics,
were performed. Only modules with adjusted p<0:05 for both of
the comparisons were retained as the final modules. All metabo-
lites in the final modules were considered significantly related to
air pollution as a group. To validate the concerted manner of
metabolites in each module across the three time points, overall
trends of each module were examined by taking the average of the
normalized levels of all metabolites in themodule.

As a second step, all of the identifiedmetabolites fromModules
1 to 4 were further mapped to classes in the Metabolon database.
Enrichment testing was performed to identify overrepresented
classes in the significant modules by using Fisher’s exact test and
adjusted using a Benjamini-Hochberg adjustment. Briefly, the
2 × 2 contingency table for this test was constructed for each
defined class within Metabolon’s database based on the metabo-
lites within the class that are present in the significant modules and
the “background” (e.g., “metabolite universe”), which consists of
the 74 classes in the metabolon database itself (Huang et al. 2009).
All statistical analysis was performed in R (R Development Core
Team).

Results

Participants Characteristics
The study participants were 12 men and 14 women with an aver-
age age of 48.6 (SD 7.1) y and BMI of 23.6 (SD 3.2) kg=m2 at
baseline. Shown in Table 1, medians of vegetable and fruit con-
sumptions were similar across the three time periods, although
the interquartile range was large for each period. Bicycling and
walking were the two most common modes of routine transporta-
tion at each visits with few changes over the three periods.

Individual Metabolites Identified with Changes over the
Study Period
A total of 886 metabolic signals were detected from the metabolo-
mics analyses, among which 570 were known metabolites and 316
were of unknown identity. Based on individual ANOVA tests, 40
metabolites changed significantly (p<0:05 prior to adjustment for
multiple comparisons) over all three time periods or between at
least one of the two pairs of time points (Table 2). These metabo-
lites revealed two primary patterns of changes before, during, and
after the Olympics: the first pattern (low–high–low) included 5
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metabolites (e.g., N-acetylglutamate, p-toluic acid) that were
lower before and after the Olympics than during the Olympics.
The second pattern (high–low–high) included 28 metabolites
(e.g., N-stearoyltaurine, 2-hydroxyglutarate) that were lower
during the Olympics than before or after the Olympics. There are
7 metabolites that did not change with the above pattern, that is, 3
metabolites were lower during and after than before the Olympics
(e.g., cortisone), and 4 metabolites were lower before than during
and after the Olympics (e.g., oxalate). None of the comparisons
reached significance after multiple testing adjustments. These
metabolites belong to six super classes and 21 classes. Table S1 lists
the numbers ofmetabolites in each class and the numbers ofmetabo-
lites that changed significantly (p<0:05) across the three time
points.

Identified Metabolites Modules
The module analysis generated 22 modules that showed signifi-
cant differences across the three time points (adjusted p<0:05)
using graph partitioning of the correlation matrix for all of the
876 compounds (Figure 1A). Three-way ANOVA analysis
(accounting for interactions with time and sex) of the 22 modules
identified four modules that were significantly different between
both pairs of time points (before vs. during and during vs. after
the Olympics) after multiple comparison adjustment (Figure 1B,C;
see also Table S2). The mean normalized values of the individual
metabolites in each module and the average values for all metab-
olites in each module (overall and according to sex) are depicted
for each time point in Figure 1C. Metabolites in each of the four
significant modules showed a similar pattern of changes, with
lower levels during the Olympics than before or after the
Olympics. Differences in average metabolite levels between men
and women were significant for all modules after adjustment:
Women had higher average levels of metabolites than men in
Modules 1–3, but lower levels in Module 4 (Figure 1C). The
adjusted p-value for the interaction between sex and time was
significant for Modules 2 and 3 (p<0:01), but not for Modules 1
and 4 (interaction p-values of 0.06 and 0.98, respectively),
although the general pattern of changes according to time period
(decreasing, then increasing) was consistent between men and
women for all modules.

There were 38, 37, 23, and 5 metabolites in the four signifi-
cant modules that were significantly different for each pairwise
comparison (before vs. during and during vs. after the Olympics)
after multiple comparison adjustment. Most of the metabolic sig-
nals in Modules 1 (33/38) and 2 (32/37) were known metabolites,
whereas most in Modules 3 (19/23) and 4 (5/5) were unidentified
(see Table S3). Identified metabolites in Modules 1–3 were from
a total of 6 super classes and 14 classes (Table 3). The 33 identi-
fied metabolites in Module 1 belonged to 8 classes within the
lipid super class: long-chain fatty acids (LCFAs), polyunsaturated
fatty acids [omega-3 and -6 (n3 and n6)] (PUFAs), medium-

chain fatty acids (MCFAs), branched fatty acids, monohydroxy
fatty acids, lysolipids, fatty acid metabolism, and glycerolipid
metabolism. Module 2 included 32 identified metabolites, most
of which belong to the peptide super class and dipeptide class.
The remaining metabolites in Module 2 belonged to 4 super
classes/classes including a) nucleotide super class, purine metab-
olism-(hypo)xanthine/inosine–containing class; b) lipid super
class, eicosanoid class; c) amino acid super class, methionine–
cysteine-S-adenosyl methione (SAM) and taurine metabolism
class; and d) carbohydrate super class; glycolysis, gluconeogene-
sis, and pyruvate metabolism subclass. The four identified metab-
olites in Module 3 belonged to the lipid super class and the three
3 classes: monohydroxy fatty acids, fatty acid metabolism, and
ketone bodies.

Enrichment Analysis
Enrichment analysis of the 69 known metabolites in the signifi-
cant modules identified seven overrepresented classes, which
changed significantly across the three time points (Table 4).
These overrepresented classes covered over half (33/53) of the
metabolites in the five annotated lipid pathways; half (3/6) of the
metabolites in the purine metabolism, (hypo)xanthine/inosine–
containing pathway; and over a third (24/61) of the metabolites
on the dipeptide pathway.

Discussion
The present study identified two major metabolic signatures in
the pathways of lipid and peptide metabolism that decreased
during the 2008 Beijing Olympics, when air pollution decreased
relative to levels before and after the Olympics. Metabolites
involved in these groups included LCFAs and PUFAs, eicosa-
noids and hydroxy fatty acid [e.g., 12-Hydroxyeicosatetraenoic
acid (12-HETE), 12-Hydroxyeicosapentaenoate (12-HEPE)],
lysolipids, and dipeptides. Metabolites in the purine metabolism
(hypo)xanthine/inosine pathway (xanthine and hypoxanthine),
and the taurine metabolism pathway [taurine and S-adenosylho-
mocysteine (SAH)] followed a pattern similar to that of the
lipid and peptide metabolism around the Olympics. These path-
ways together might indicate a systemic reaction consistent
with oxidative stress and inflammation before and after the
Olympics when air pollution levels were high.

Exposure to ambient air pollution has been associated with
oxidative stress that arises from the cellular response to reactive
oxygen species (ROS) (Lodovici and Bigagli 2011). Free radicals
and ROS injure the cells and induce damages to lipids, proteins,
and nucleic acids. In the present study, we found the lipid metab-
olism pathway changed significantly across the three time points
when air pollution changed drastically. Taken together with our
previous reports on biomarkers of oxidative stress and antioxi-
dant enzymes (Farhat et al. 2018) in the parent study population,
these lipid metabolite changes might implicate a critical role of

Table 1. Characteristics of the study population according to study visit, n=26.

Characteristic Baseline (before Olympics) During Olympics After Olympics

Age [y (mean±SD)] 48:6± 7:1 NA NA
Female [n (%)] 14 (53.8%) NA NA
BMI [kg=m2 (mean±SD)] 24:0± 3:2 NA NA
Vegetable consumption {g/week [median (Q1, Q3)]} 2,100.0 (1,837.5, 2,625.0) 2,100.0 (1,750.0, 3,500.0) 2,125.0 (1,862.5, 2,850.0)
Fruit consumption {g/week [median (Q1, Q3)]} 425.0 (300.0, 450.0) 450 (362.5, 1,162.5) 425.0 (350.0, 737.5)
Transportation [n (%)]
Bicycle 11 (45.8%) 10 (38.5%) 10 (38.5%)
Public transportation 3 (12.5%) 1 (3.9%) 1 (3.9%)
Walking 10 (41.7) 15 (57.7%) 15 (57.7%)

Note: NA, not applicable.
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Table 2. Forty metabolites with significant differences (p<0:05 prior to adjustment for multiple comparisons) before, during, after the 2008 Beijing Olympics
in 26 nonsmoking adults.

Super class, class, and metabolite

Level of metabolitesa Overall comparison During vs. before the Olympics After vs. during the Olympics

Missing (%)bBefore During After p-Value Q-Value Ratio p-Value Q-Value Ratio p-Value Q-Value

Amino acid super class
Glutamate metabolism class
N-Acetylglutamate 1.04 1.08 1.06 0.03* 1.00 1.04* 0.03 0.99 0.98 0.9 0.99 0

Phenylalanine and tyrosine metabolism class
p-Toluic acid 0.95 1.07 0.87 0.08 1.00 1.13* 0.02 0.99 0.81 0.14 0.99 0

Carbohydrate super class
Fructose, mannose, and galactose metabolism class
Sorbitol 1.20 1.07 2.02 0.10 1.00 0.89* 0.05 0.99 1.90 0.82 0.99 0

Pentose metabolism class
Ribitol 1.07 1.02 1.32 0.05 1.00 0.96 0.67 0.99 1.29 0.06 0.99 0

Cofactors and vitamins super class
Ascorbate and aldarate metabolism class
Oxalate (ethanedioate) 0.94 1.02 1.17 0.02* 1.00 1.09 0.44 0.99 1.14* 0.05 0.99 0
Ascorbate (vitamin C) 0.83 1.13 1.55 0.03* 1.00 1.35 0.44 0.99 1.38 0.07 0.99 9.75

Nicotinate and nicotinamide metabolism class
Nicotinamide 1.04 0.91 1.09 0.22 1.00 0.87* 0.04 0.99 1.20 0.5 0.99 8.75

Lipid super class
Endocannabinoid subclass
N-Stearoyltaurine 1.79 0.98 1.52 0.05 1.00 0.55* 0.02 0.99 1.55* 0.03 0.99 5.50

Fatty acid metabolism (acyl carnitine) class
Hydroxybutyrylcarnitinec 1.75 1.12 1.59 0.09 1.00 0.64* 0.04 0.99 1.42 0.07 0.99 0

Fatty acid, dicarboxylate class
2-Hydroxyglutarate 1.10 0.92 1.14 0.02* 1.00 0.83* 0.02 0.99 1.24* 0.01 0.92 0
Sebacate (decanedioate) 1.23 1.09 1.34 0.10 1.00 0.88 0.58 0.99 1.23* 0.03 0.99 33.50

Fatty acid, monohydroxy class
3-Hydroxydecanoate 1.15 1.01 1.31 0.03* 1.00 0.88* 0.04 0.99 1.29* 0.01 0.92 0
3-Hydroxyoctanoate 1.24 1.10 1.52 0.06 1.00 0.89 0.29 0.99 1.38* 0.02 0.95 0

Glycerolipid metabolism class
Glycerol 3-phosphate (G3P) 1.03 1.41 1.02 0.06 1.00 1.37 0.21 0.99 0.72* 0.03 0.99 0

Long-chain fatty acid class
Eicosenoate (20:1n9 or 11) 1.18 1.12 1.46 0.02* 1.00 0.95 0.69 0.99 1.30* 0.01 0.92 0
Pentadecanoate (15:0) 1.03 0.89 1.09 0.03* 1.00 0.86* 0.02 0.99 1.22* 0.04 0.99 0
10-Nonadecenoate (19:1n9) 1.12 0.95 1.18 0.03* 1.00 0.85 0.05 0.99 1.24* 0.01 0.92 9.50
Myristoleate (14:1n5) 1.17 1.10 1.43 0.09 1.00 0.94 0.28 0.99 1.30* 0.02 0.92 0
Palmitoleate (16:1n7) 1.08 1.00 1.25 0.10 1.00 0.92 0.30 0.99 1.25* 0.02 0.95 0
10-Heptadecenoate (17:1n7) 1.04 0.93 1.13 0.12 1.00 0.90 0.12 0.99 1.22* 0.04 0.99 0
Oleate (18:1n9) 1.03 0.96 1.11 0.13 1.00 0.93 0.43 0.99 1.17* 0.03 0.99 0

Lysolipid class
1-Palmitoylglycerophosphoglycerolc 1.55 1.22 1.31 0.14 1.00 0.78* 0.04 0.99 1.08 0.42 0.99 0

Medium-chain fatty acid class
Caprylate (8:0) 1.12 1.01 1.34 <0:01* 1.00 0.90 0.91 0.99 1.33* 0.01 0.92 8.75
Caprate (10:0) 1.05 0.98 1.28 0.03* 1.00 0.93 0.36 0.99 1.30* 0.01 0.92 0
Caproate (6:0) 1.07 0.93 1.20 0.05 1.00 0.87 0.15 0.99 1.30* 0.02 0.92 0
5-Dodecenoate (12:1n7) 1.36 1.14 1.64 0.07 1.00 0.83 0.20 0.99 1.44* 0.02 0.92 0

Polyunsaturated fatty acid (n3 and n6) class
Docosatrienoate (22:3n3) 1.14 0.97 1.19 0.04* 1.00 0.85 0.14 0.99 1.23* 0.01 0.92 0
Dihomo-linoleate (20:2n6) 1.10 0.94 1.12 0.07 1.00 0.85 0.09 0.99 1.19* 0.02 0.95 0
Docosadienoate (22:2n6) 1.08 0.98 1.19 0.07 1.00 0.91 0.36 0.99 1.22* 0.03 0.99 5.50
Arachidonate (20:4n6) 1.08 0.99 1.04 0.15 1.00 0.91 0.57 0.99 1.06* 0.04 0.99 20.50
Mead acid (20:3n9) 1.17 1.00 1.07 0.18 1.00 0.85 0.26 0.99 1.07* 0.04 0.99 20.25

Steroid Class
Pregnanediol-3-glucuronide 2.37 2.55 3.87 0.02* 1.00 1.07 0.39 0.99 1.52* 0.03 0.99 0
Pregn steroid monosulfatec 1.18 1.23 1.17 0.04* 1.00 1.04 0.06 0.99 0.96 0.66 0.99 0
Cortisone 1.02 1.00 0.96 0.09 1.00 0.98* 0.04 0.99 0.96 0.78 0.99 0

Sterol class
Campesterol 0.89 0.81 1.04 0.10 1.00 0.92 0.99 1.00 1.27* 0.03 0.99 1.75

Peptide super class
Dipeptide class
Phenylalanyltryptophan 0.97 1.03 1.14 0.14 1.00 1.06 0.22 0.99 1.11* 0.04 0.99 0
Threonylphenylalanine 1.26 0.97 1.69 0.15 1.00 0.77 0.67 0.99 1.74* 0.04 0.99 0

γ-Glutamyl amino acid class
γ-Glutamylthreoninec 1.10 1.10 1.04 0.02* 1.00 1.00 0.67 0.99 0.95* 0.02 0.92 29.75
Xenobiotics super class
Chemical class
Glycerol 2-phosphate 1.06 1.37 1.03 0.08 1.00 1.30 0.54 0.99 0.75* 0.05 0.99 0

Food component/plant class
Dihydroferulic acid 1.33 1.11 1.05 0.17 1.00 0.83 0.27 0.99 0.95* 0.04 0.99 0

Note: Statistical comparisons were adjusted for time-invariant variables (age, sex, BMI) and time-varying variables including diet and transportation mode. p-Value was calculated
from ANOVA for overall comparison and from post hoc tests for during vs. before and after vs. during contrasts. Q-value was calculated as false discovery rate–adjusted p-value using
Storey method. Ratio >1 indicates increased, whereas <1 indicates decreased levels of metabolites. *, p<0:05.
aSet median as 1 and scaled according to a per biochemical basis.
bAveraged proportion of missing value from the three time points.
cIndicates compounds with Level 3 identity confidence (lacked authenticated standards but had characteristics correlated with known metabolites).
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the lipid pathway in the oxidative process [e.g., eicosapentaenoic
acid (EPA), docosapentaenoic acid (DPA), 12-HEPE], and the
antioxidation/anti-inflammation process (e.g., taurine, glycine). A
hypothesized mechanism is synthesized in Figure 2.

First, we observed decreased levels of fatty acids during the
Olympics than before or after the Olympics, particularly path-
ways of LCFAs and n3 (EPA and DHA) and n6 PUFAs (AA and
linoleic acid [LA]). In response to free radicals and ROS, the cel-
lular membrane phospholipid breaks down to free fatty acids
(Valko et al. 2016). These broken-down free fatty acids include
PUFAs (e.g., LA, EPA) because they were found at higher levels
before and after than during the Olympics. The liberation of
membrane fatty acids or lipoprotein fatty acids is consistent with
an increased expression or activation of phospholipase A2
(PLA2) (Brüske et al. 2011; Sevanian and Kim 1985; Tithof et al.
2002; van Kuijk et al. 1987). PLA2 belongs to a group of
enzymes that hydrolyze the sn-2 position of glycerophospholi-
pids, thereby generating free fatty acids and lysolipids. Thus, the
increased levels of free fatty acids may be indicative of cellular
membrane or plasma lipoprotein phospholipid turnover during air
pollution exposure.

Second, we observed that downstream metabolites of AA and
EPA, that is, 12-HETE and 12-HEPE, respectively, significantly
changed in a concerted manner similar to PUFAs. Free radical- and
ROS-mediated lipid peroxidation of AA formsmixed hydroperoxy
eicosatetraeneoic acids (HpETE) positional isomers (including 5-,

8-, 11-, 12-, or 15 HpETE). These hydroperoxy derivatives are rap-
idly reduced to their corresponding hydroxy derivatives by cellular
and plasma glutathione peroxidase (GPx). Our metabolomics anal-
ysis indicated significant signals from the C12 positional isomers
among the detected hydroxy fatty acids (i.e., 12-HETE, 12-HEPE)
that might be indicative of 12-LOX activity. 12-LOX has catalytic
activity against several substrates, including AA and EPA and
lesser activity against LA (Ikei et al. 2012). Regulation of 12-LOX
activity appears to be increased as a function of the availability of
its PUFA substrates (Bidgood et al. 2000; Yeung and Holinstat
2011). 12-HETE is an important precursor of pro-inflammation
mediators such as prostaglandins, leukotrienes, and thromboxane.
In contrast, n3 PUFAs (mainly EPA and DPA) convert to 12-
HEPE, which is an important precursor of anti-inflammatorymedi-
ators such as resolvins and the peroxisome proliferator-activated
receptor, which attenuates the nuclear factor kappa-B (NF-κB)
inflammatory pathway. Collectively, our data suggest that deriv-
atives of lipid peroxidation may play a role in air pollution-
induced inflammatory responses. Our results are in line with an
experimental metabolomics study of mice exposed to ultrafine
particulate matter that showed significantly increased intestine
12-HETE AA (Li et al. 2015). Given the key role of lipid peroxi-
dation products in the development of atherosclerosis (Künzli
et al. 2005), our results provide another line of evidence support-
ing a role of lipid metabolism, especially PUFA metabolism, in
mechanisms linking air pollution and cardiovascular health
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Figure 1. (A) Twenty-two modules (shown in different colors) were identified by graph partition of 886 compounds with significant differences across the three
time points (adjusted p<0:05). Each node represents a metabolite. An edge was placed between two metabolites if the absolute value of their Spearman’s cor-
relation coefficient was >0:7. All modules were adjusted for age, sex, BMI, diet, and transportation mode. (B): Four modules including 69 metabolites that
changed significantly across the three time points (before, during, and after the Olympics) are shown in red, whereas nodes in all other modules are shown in
gray. (C) Average levels of individual metabolites (light gray lines) in each module during each of the three time points, and average levels for all metabolites
combined, overall (solid line) and according to sex (dotted line for women, dashed line for men), at each time point.
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Table 3. Sixty-nine known metabolites identified from module analyses with significant differences (Benjamini and Hochberg–adjusted p<0:05) before, dur-
ing, and after the Beijing 2008 Olympics in 26 nonsmoking adults.

Module Super class Class Metabolites

Module 1 Lipid super class Long-chain fatty acid class 10-Heptadecenoate (17:1n7)
Palmitoleate (16:1n7)
Margarate (17:0)
Palmitate (16:0)
Myristoleate (14:1n5)
Oleate (18:1n9)
10-Nonadecenoate (19:1n9)
Myristate (14:0)
cis-Vaccenate (18:1n7)
Nonadecanoate (19:0)
Stearate (18:0)
Eicosenoate (20:1n9 or 11)

Polyunsaturated fatty acid (n3 and n6) class Linolenate [a or c; (18:3n3 or 6)]
Docosapentaenoate (n3 DPA; 22:5n3)
Eicosapentaenoate (EPA; 20:5n3)
Stearidonate (18:4n3)
Dihomo-linoleate (20:2n6)
Linoleate (18:2n6)
Docosadienoate (22:2n6)
Docosatrienoate (22:3n3)
Dihomo-linolenate (20:3n3 or n6)
5-Dodecenoate (12:1n7)

Medium-chain fatty acid class Caprate (10:0)
Caprylate (8:0)
Laurate (12:0)

Fatty acid metabolism (acyl carnitine) class cis-4-Decenoyl carnitine
Hexanoylcarnitine
Decanoylcarnitine
Octanoylcarnitine

Fatty acid, branched class 17-Methylstearate
Fatty acid, monohydroxy class 3-Hydroxydecanoate
Glycerolipid metabolism class Glycerol
Lysolipid class 1-Eicosapentaenoylglycerophosphocholine (20:5n3)a

Module 2 Peptide Dipeptide class Isoleucylglycine
Prolylglycine
Valylglycine
Leucylglycine
Phenylalanylglycine
Isoleucylalanine
Prolylalanine
Phenylalanylalanine
Leucylphenylalanine
Prolylphenylalanine
Asparagylleucine
Valylleucine
Histidylleucine
Aspartylleucine
Threonylleucine
Leucylglutamate
Valylglutamate
Tyrosylglutamate
Valylglutamine
Valylaspartate
Isoleucylaspartate
Phenylalanylaspartate
Isoleucylvaline
Histidylvaline

Nucleotide Purine metabolism, (hypo)xanthine/inosine–containing class Hypoxanthine
Xanthine
Xanthosine

Lipid Eicosanoid class 12-HETE
12-HEPE

Amino acid Methionine, cysteine, SAM and taurine metabolism class S-Adenosylhomocysteine (SAH)
Taurine

Carbohydrate Glycolysis, gluconeogenesis, and pyruvate metabolism class Lactate
Module 3 Lipid Fatty acid metabolism (acyl carnitine) Acetylcarnitine

Hydroxybutyrylcarnitinea

Fatty acid, monohydroxy class 3-Hydroxyoctanoate
Ketone bodies class 3-Hydroxybutyrate (BHBA)

Note: S-adenosyl methione.
aCompounds with Level 3 identity confidence (lacked authenticated standards but had characteristics correlated with known metabolites).
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(Brook et al. 2010). Previous studies have reported suggestive
evidence that nutritional supplementation may attenuate air
pollution-induced health effects (Hennig et al. 2007; Péter et al.
2015; Tong et al. 2012). Thus, further studies of the potential ben-
efits of antioxidant vitamins, micronutrients, and n3 PUFA sup-
plementation for reducing adverse health effects of ambient air
pollution are warranted.

Dipeptide pathways, especially those involving glycine and
glutamate metabolism, changed significantly across the three
time points. We found significant changes in five metabolites
belonging to the glycine-dipeptide class (e.g., isoleucylglycine,
prolylglycine) and four metabolites belonging to the glutamate-
dipeptide class (e.g., leucylglutamate, valylglutamate). Glycine
and glutamate are both important mediators of the GSH
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Figure 2. The potential pathways of metabolomics changes before, during, after the Olympics. Bolded underlined metabolites changed significantly across the
three time points with adjustment of age, sex, BMI, diet, and transportation mode. Note: AA, arachidonic acid; COX, cyclooxygenase; EPA, eicosapentaenoate;
GPx, glutathione peroxidase; GSH, glutathione; HETE, Hydroxyeicosatetraenoic acid; HODE, Hydroxyoctadecadienoic acid; HpEPE, hydroperoxy-
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LOX, lipoxygenase; NOx, Nitrogen oxides; O3, Ozone; OS, oxidative stress; PGH2, prostaglandins; PLA2, phospholipases A2; PM, particulate matter; SAH,
S-adenosylhomocysteine.

Table 4. Enrichment analysis for significantly overrepresented classes of the 60 metabolites in the modules that showed significant changes before, during, and
after the Olympics in 26 nonsmoking adults.

Super pathways and pathways p-Value Adjusted p-Value

Metabolites (n)

Ratio (%)Module identified In the pathway annotation

Lipid super pathway
Eicosanoid pathway 0.01 0.03 2 2 100%
Long-chain fatty acid pathway <0:01 <0:01 12 17 71%
Polyunsaturated fatty acid (n3 and n6) pathway <0:01 <0:01 9 14 64%
Medium-chain fatty acid pathway 0.01 0.02 4 8 50%
Fatty acid metabolism (acyl carnitine) pathway <0:01 <0:01 6 12 50%
Nucleotide super pathway
Purine metabolism, (hypo)xanthine/inosine–containing pathway 0.03 0.05 3 6 50%
Peptide super pathway
Dipeptide pathway <0:01 <0:01 24 61 39%

Note: Module analysis identified 69 metabolites that mapped to Metabolon classes, only classes with significant results (adjusted p<0:05) and more than one metabolite are shown.
p-Values are calculated using Fisher’s exact test and adjusted with a Benjamini-Hochberg correction.
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metabolism pathways (Wu et al. 2004). Metabolites belonging to
the glycine and glutamate metabolism classes decreased during,
and then increased after, the Olympics. This is consistent with
changes in GSH-dependent enzymes observed in the parent BoaP
study (Farhat et al. 2018). In the parent study, GPx levels
decreased by 12.0% during the Olympics and increased by 6.5%
after the Olympics (Farhat et al. 2018). GPx is a key front-line
defense phase II enzyme that breaks down hydrogen peroxide
and lipid hydroperoxides into water and less toxic hydroxy lipids,
respectively. GPx requires GSH as a cofactor for its activity and
converts to GSH to glutathione disulfide (GSSG) as a byproduct.
GSH also serves as the cofactor for glutathione-S-transferase,
which detoxifies 4-hydroxyalkenal lipid peroxide breakdown
products (Maulucci et al. 2016) and has direct antioxidant scav-
enging activity (Chaudière and Ferrari-Iliou 1999). Taken to-
gether, our findings further implicate a role of the GSH and the
GSH-dependent family of enzymes in antioxidation processes
related to air pollution exposure.

In addition to the lipid metabolism, we observed that xanthine
and hypoxanthine significantly changed across the three time
points. Xanthine and hypoxanthine are metabolites associated
with the breakdown of purine nucleotides during the production
of the endogenous antioxidant urate (Glantzounis et al. 2005). In
animal studies, PM10 exposure was shown to significantly
increase xanthine oxidase, coinciding with effects on oxidative
stress, and endothelial NO synthase (eNOS) and inducible NO
synthase (iNOS) mRNA expression levels (Dianat et al. 2016).
Therefore, increased oxidative stress in air pollution exposure
may threaten the integrity of the nucleus.

Our study also found changes in taurine, a product on the me-
thionine–cysteine and taurine (MCT) metabolism pathway.
Taurine is an important amino acid involved in various physio-
logical processes such as bile acid conjugation, which produces
taurine-conjugated bile acids and taurine chloramine (Huxtable
1992; Jacobsen and Smith 1968). These products are important
mediators in anti-inflammatory effects, antioxidative effects, and
lipid metabolism (Murakami 2015). An experimental study
showed a higher level of taurine after air pollution exposures in
rats that was consistent with a response to increased oxidative
stress (Zhang et al. 2017). In a crossover study of healthy volun-
teers, taurine was increased in lung lavage fluid after exposure to
pure biodiesel exhaust for 1 h (Surowiec et al. 2016). These find-
ings suggest that air pollution exposure might induce oxidation
first in the respiratory systems and then further spread into the
circulation system. In the present study, SAH, another derivative
on the MCT metabolism pathway, also changed significantly
across the three time points in a manner similar to taurine. SAH
is the immediate precursor of all homocysteine produced in the
body, and there is growing evidence that SAH has an important
role in different chronic diseases, including cardiovascular dis-
eases and diabetes (Herrmann et al. 2005; Xiao et al. 2015).

Glycine metabolism decreased during the period of pollution
control and then increased again after the removal of the controls.
Glycine metabolism is a critical intermediate in the biosynthesis
of neurotransmitters and their breakdown markers. The observed
changes suggest that air pollution exposure might have the poten-
tial to affect neurophysiology (Hernandes and Troncone 2009).
However, it must be noted that some neurotransmitters are also
synthesized outside of the central nervous system where they
serve signaling functions independent of neurotransmission.

Only a few epidemiological studies have investigated the
effect of air pollution on human metabolomics. One untargeted
metabolomics study analyzed 280 known metabolites in a subset
of the TwinsUK cohort (Menni et al. 2015). The authors found
a-tocopherol was positively associated with lung function and

inversely associated with air pollution exposure. α-Tocopherol is
a biologically active form of vitamin E that plays an important
role in antioxidation (Zingg et al. 2015). Consistently, another
untargeted metabolomics study on serum and saliva samples
from 54 healthy college students found associations of leukotri-
ene and vitamin E metabolism pathways with air pollution expo-
sures (Liang et al. 2018). In the present study, we found
antioxidant reaction-related metabolites (e.g., isoleucylglycine on
the glycine metabolism pathway, leucylglutamate on the gluta-
mate metabolism pathway) also changed significantly across the
three time points when air pollution changed drastically.

We found that lipidmetabolismmay be an importantmechanis-
tic pathway in air pollution exposure, which is consistent with
other metabolomics studies. In one untargeted study, inoleate me-
tabolism pathway was found as a mediator underlying the associa-
tion of air pollution with asthma and cardio-cerebrovascular
diseases (Jeong et al. 2018). In a targeted metabolomics analysis
within the Cooperative Health Research in the Augsburg Region
(KORA) cohort, two phospholipids that incorporated choline (i.e.,
lysophosphatidylcholines and phosphatidylcholines) were signifi-
cantly associated with NO2 and ozone exposures (Ward-Caviness
et al. 2016). In our study, we also found one similar phospholipid
(i.e., 2-palmitoylglycerophosphocholine) decreased (p=0:02)
during and then increased (p=0:14) after the Olympics. In a tar-
geted metabolomics study within the CATHGEN cohort, short-
term exposures to ambient PM2:5 and ozonewere positively associ-
ated with LCFA (i.e., C16:1) (Breitner et al. 2016). Again, we
found palmitoleate, which is also an LCFA with 16 carbons
(C16:1n7), and 70.6% of other metabolites on the LCFA pathway
significantly associated with air pollution level changes.

Our study has some strengths. First, the panel design took
advantage of the air quality controls during the 2008 Olympics and
thus mimicked a “natural experiment” manipulating air pollution
levels. Although we cannot infer causal relations between air pol-
lution and the metabolomic signatures, the metabolomic changes
coincided with dramatic changes in air pollution. In addition, by
evaluating repeat samples from the same individuals, we were able
to minimize the influence of differences in individual characteris-
tics such as genetic predisposition. We also included sex, age,
BMI, diet, and mode of transportation as potential confounders in
analyses. Second, we employed a graphic partition network analy-
ses to identify modules of metabolites that were associated with air
pollution level changes. This network analysis not only increased
the power of our data analysis but also allowed us to identify
classes in which metabolites were collectively associated with air
pollution levels.

Our study also has certain limitations. First, although we
had a total of 78 serum samples in this analysis, our sample size
was relatively small. Therefore, many individual metabolites
(Table 1) that were associated with air pollution level changes
were not statistically significant after correcting for multiple
comparisons. However, through network analyses, most of
those identified metabolites were confirmed in the module anal-
ysis (Table 2) with significant changes across the three time
points after correcting for multiple comparisons. False-positive
results are common in -omics studies. However, given the fact
that metabolites are systemically interrelated, traditional correc-
tion methods (e.g., Benjamin-Hochberg method) might be
overly conservative for exploring novel pathways (Tzoulaki
et al. 2014), and the issue needs to be further addressed statisti-
cally to balance multiple comparisons and the systemic com-
plexity of metabolomics per se. The small sample size limited
our ability to conduct sex-specific module analysis, although
our data suggested a potential effect modification by sex. Future
studies with sufficient sample size will be needed to examine
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the association of air pollution with metabolome by sex.
Second, we also acknowledge that a potential bias may result
from the limited annotation based on the extent of prior knowl-
edge available. At present, there is a large portion of metabo-
lites with unknown identities that may be functionally or
mechanistically important. Third, we lack personal air pollution
exposure assessments. Although overall air pollution changes
were drastic across the three periods, participants may have had
different individual exposures. In addition, the time intervals
between each of the three time points were relatively short for
both air pollution changes and metabolomic changes. Thus, the
results may not be applicable to long-term exposure to air pollu-
tion or long-term changes in metabolomics. Given that our
study was conducted in heavily air polluted areas, the findings
may not be generalizable to populations in areas with low air
pollution levels. Fourth, the metabolomic changes across the
three time points may be explained by other factors that were
not controlled in the analyses, such as changes in the epige-
nome, transcriptome, and other lifestyle factors.

Conclusions
Overall, our study identified two major metabolic signatures that
showed significant changes before, during, and after the Beijing
Olympics—when air pollution level changed drastically—including
changes in lipid and peptide super classes and in polyunsaturated
fatty acids, glycine-dipeptide, taurine, and xanthine.
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